The lowest excitations in the spin-s XXX magnet and conformal invariance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L485
(http://iopscience.iop.org/0305-4470/23/10/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 14:02

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The lowest excitations in the spin-s $X X X$ magnet and conformal invariance

LV Avdeev
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Head Post Office, PO Box 79, Moscow, 101000, USSR

Received 18 January 1990

Abstract

The Bethe-ansatz equations for the integrable spin-s isotropic Heisenberg antiferromagnet are solved numerically at a finite number of sites N. The vacuum and the lowest singlet and triplet solutions are presented for $s=\frac{1}{2}, \ldots, 2$ up to $s N=240$. Through extrapolation of the finite-size data, the central charge and anomalous dimensions of the scaling operators for the underlying conformal field theory are calculated and found to agree with the expected theoretical values. The status of the Bethe string hypothesis about the structure of the solutions is discussed based on the obtained computer data up to $s=\frac{9}{2}$.

The study of low-lying excitations in finite-size one-dimensional quantum systems without a mass gap is of interest because of their relation to conformal invariance. The behaviour of finite-size energy corrections in the scaling region allows one to determine the parameters of the underlying conformal field theory relevant to critical phenomena [1]. The Bethe ansatz [2,3] reduces the solution of an integrable model to a system of coupled equations. This permits reaching a larger size and performing a more definite check of conformal-invariance predictions.

The integrable spin-s generalisation [4-6] of the Heisenberg ring of N spins leads to the following Bethe-ansatz equations

$$
\begin{equation*}
\left(\frac{\lambda_{j}+\mathrm{i} s}{\lambda_{j}-\mathrm{i} s}\right)^{N}=-\prod_{k=1}^{M} \frac{\lambda_{j}-\lambda_{k}+\mathrm{i}}{\lambda_{j}-\lambda_{k}-\mathrm{i}} \quad j=1, \ldots, M \tag{1}
\end{equation*}
$$

where $0 \leqslant M \leqslant s N$. A solution set of complex numbers $\left\{\lambda_{j}\right\}^{M}$ determines the energy E, momentum P, and spin S of a state

$$
\begin{equation*}
E=-\sum_{j=1}^{M} \frac{s}{\lambda_{j}^{2}+s^{2}} \quad P=\mathrm{i}^{-1} \sum_{j=1}^{M} \ln \frac{\lambda_{j}+\mathrm{i} s}{\lambda_{j}-\mathrm{i} s} \quad S=s N-M . \tag{2}
\end{equation*}
$$

Conformal invariance predicts [1] that with periodic boundary conditions as $N \rightarrow \infty$ the ground-state and excitation energies should behave like

$$
\begin{align*}
& E_{v}=e_{\alpha} N-\frac{1}{6} \pi v N^{-1}\left[c+\mathrm{O}\left(\ln ^{-3} N\right)\right] \tag{3}\\
& E_{\alpha}-E_{v}=2 \pi v N^{-1}\left[x_{\alpha}+d_{\alpha} / \ln N+o\left(\ln ^{-1} N\right)\right] \tag{4}
\end{align*}
$$

where a central charge c, scaling dimensions x_{α}, and slopes d_{α} are parameters of a universality class, while e_{∞} and v are specific of a particular model. Equation (4) refers to the lowest state of a 'tower' of states with

$$
\begin{equation*}
E_{\alpha}^{(m, n)}=E_{\alpha}+2 \pi v N^{-1}(m+n) \quad P_{\alpha}^{(m, n)}=P_{\alpha}+2 \pi N^{-1}(m-n) \tag{5}
\end{equation*}
$$

where $m, n \geqslant 0$ are integers.

For the present model, $e_{x}=\sum_{n=1}^{s}(2 n-1)^{-1}$ if s is an integer, and $e_{\infty}=$ $\ln 2+\sum_{n=1}^{s-1 / 2}(2 n)^{-1}$ for a half-odd-integer s [5,6]. The effective velocity of sound $v=\pi / 2$ is extracted from the dispersion relation for elementary excitations (holes) [5-8], which should reproduce formula (5) as $N \rightarrow \infty$. The conjectured value of the central charge is [8]

$$
\begin{equation*}
c=3 s /(s+1) \tag{6}
\end{equation*}
$$

It agrees with the specific heat capacity at low temperatures [6] which should be $C_{N} / N \simeq \frac{1}{3} \pi c v^{-1} T$. The conjecture for the underlying conformal field theory is the $\mathrm{SU}(2) k=2 s$ Wess-Zumino-Novikov-Witten σ model [9]. In that case, primary field operators should have the following scaling dimensions [10]

$$
\begin{equation*}
x_{j}=j(j+1) /(s+1) \quad j=0, \frac{1}{2}, \ldots, s \tag{7}
\end{equation*}
$$

For the simplest case of $s=\frac{1}{2}$, when the bulk of the configuration comprises a sea of real roots, powerful analytic methods have been developed to evaluate finite-size corrections [11-13]. The results agree with the numerical computations [14, 15], although the logarithmic corrections in formulae (3) and (4) make the extrapolation, even for $N \leqslant 1024$ [15], rather hard [13].

For $s>\frac{1}{2}$, another difficulty arises, concerning the accuracy of the Bethe string hypothesis [2,16] used in references [5,6]. The hypothesis claims that, as $N \rightarrow \infty$, any solution of equations (1) should consist of some n-strings

$$
\begin{equation*}
\lambda_{m} \simeq x+\mathrm{i}[(n+1) / 2-m] \quad m=1, \ldots, n \tag{8}
\end{equation*}
$$

with deviations of $\mathrm{O}[\exp (-a N)]$. Already at $s=\frac{1}{2}$, some non-string configurations appear [17, 18]. A relaxed version [19] of the string hypothesis involves these configurations on the background of the sea of perfect $2 s$-strings. However, the numerical computations [20-22] show that at least $\mathrm{O}(1 / N)$ deformations of the sea strings occur. As a result, the analytic estimate that does not take these deformations into account leads to $c=1$ irrespective of s [22], which contradicts the numerical data [18, 20-22] supporting formula (6).

An important step to the analytic description of the string deformations has recently been made by de Vega and Woynarovich [23]. They succeeded in analytically estimating the leading correction to the imaginary parts of the roots (8) for the vacuum solution through a generalisation of the Euler-Maclaurin integration formula to include nonanalytic contributions in N^{-1}. It is worth comparing their estimate, which describes the asymptotics in $N \rightarrow \infty$ for the bulk of the deformations (except the ends of the string distribution), with the computer data. In table 1, data for deviations of the distance between successive members of a string (8) from the imaginary unit, $\Delta x+\mathrm{i} \Delta y=$ $\lambda_{m}-\lambda_{m+1}-\mathrm{i}$, are shown. The minimum Δy is multiplied by N and then extrapolated

Table 1. The extrapolated minimum string deformation $N \Delta y_{\min }^{\text {ex }}$ and its theoretical prediction $N \Delta y_{\text {min }}^{\text {th }}$ for different s.

$2 s$	$N \Delta y_{\text {min }}^{\text {ex }}$	$N \Delta y_{\text {min }}^{\text {th }}$	$2 s$	$N \Delta y_{\text {min }}^{\text {ex }}$	$N \Delta y_{\text {min }}^{\text {ih }}$
2	0.220	0.220635600	6	0.053	0.050403474
3	0.153	0.153174481	7	0.043	0.040913071
4	0.093	0.091572048	8	0.034	0.031946720
5	0.072	0.070258730	9	0.030	0.026892235

to $N \rightarrow \infty$ from the computer results for $s N \leqslant 128$ [20]. This $N \Delta y_{\text {min }}^{\text {ex }}$ is presented in conjunction with the theoretical predictions [23] $N \Delta y_{\min }^{\text {th }}$ for $1 \leqslant s \leqslant \frac{9}{2}$. A perfect agreement is observed within extrapolation errors, presumably of $O(1 / N)$.

A comparison of internal deformations of a sea string near the origin for the $s=\frac{9}{2}$, $N=52$ vacuum with the asymptotics [23] is presented in table 2 . The roots of equations (1), computed numerically, and their imaginary parts in the asymptotic approximation [23], taking into account the real-root position, are presented. One can see that the theoretical predictions underestimate by $7-20 \%$ the actual string deformations. The error seems to be of $\mathrm{O}(1 / N)$.

Table 2. Numerical solutions λ and theoretical predictions $\lambda^{\text {th }}$ for the roots of a 9 -string at $s=9 / 2, N=52$.

$\operatorname{Re} \lambda$	$\operatorname{Im} \lambda$	$\operatorname{Im} \lambda^{\text {th }}$
0.019295132866	0	0
0.019294724871	± 1.00061728746	± 1.00051810880
0.019293355234	± 2.00132957757	± 2.00113655389
0.019290441652	± 3.00232360198	± 3.00205414255
0.019284156898	± 4.00429049252	± 4.00399720557

Nonetheless, for excited states there are still no analytic results taking into account string deformations which are not smaller than $O(1 / N)$, as we have seen. Thus, numerical computations may provide important information. The results of the present letter (tables 2-5) have been obtained by a Newton-type method for the logarithms of equations (1) [20], regrouped [18] according to the chain configuration of strings [16] and multiplets [19], to localise singularities in internal deformations of the chains.

To extract the critical parameters, it is convenient to consider the following finite-size energy correction:

$$
\begin{equation*}
f=\left(E-e_{\infty} N\right) N /(2 \pi v) . \tag{9}
\end{equation*}
$$

According to formulae (3) and (6), we expect that for the vacuum solutions, as $N \rightarrow \infty$, f_{v} should approach the limit of $-\frac{1}{4} s /(s+1)$, proportional to the central charge. Thus, for $2 s=1,2,3,4$, and 9 , we get $-\frac{1}{12},-\frac{1}{8},-\frac{3}{20},-\frac{1}{6}$ and $-\frac{9}{44}$. Besides the vacuum, for each s and N, two lowest excitations are computed, the singlet (with the total spin $S=0$) and the triplet ($S=1$). Solutions of the latter type have already been studied [21,22] (sector $r=1$); in the domain of overlap, the results are in agreement with ours which extend to larger N. A conjecture to be verified in tables 3 and 4 is that the conformal dimensions both for the singlet and triplet are given by formula (7) with $j=\frac{1}{2}, x_{s}=x_{t}=\frac{3}{4} /(s+1)$. Hence, the finite-size energy corrections should approach f_{s}, $f_{1} \rightarrow \frac{1}{4}(3-s) /(s+1)$, which equals $\frac{5}{12}, \frac{1}{4}, \frac{3}{20}, \frac{1}{12}$, and $-\frac{3}{44}$ for $2 s=1,2,3,4$, and 9 . The normalisation factors in tables 3 and 4 involve the denominators of the expected limit values, to make the comparison easier.

The data are extrapolated to zero in $1 /(\ln N)$ linearly (using two last rows) and quadratically (three last rows). The extrapolation of the vacuum correction f_{v} includes the terms $\ln ^{-3} N$ (3) and $\ln ^{-4} N$. For estimating extrapolation errors and getting improved values, the results of the higher-level Bethe-ansatz approximation [17-20] are included in table 3. The corresponding values of F_{s} and F_{t} for the singlet and
Table 3. Finite-size energy corrections for the vacuum and the lowest singlet and triplet excitations $f_{v, \cdots,}$ in conjunction with the higher-level Bethe-ansatz approximation
$F_{s, t}$ and their extrapolations to $N \rightarrow \infty$.

$2 s \quad N$	$12 f_{v}$	$12 f_{s}$	$12 f_{t}$	$2 F_{3}$	$2 F_{1}$	6f, $/ F$,	$6 f_{t} / F_{t}$
18	-1.030226965	8.224517330	4.053739432	1.570173	0.7853180	5.237968	5.161908
16	-1.010 452107	7.660999337	4.245728069	1.476720	0.8340110	5.187850	5.090734
132	-1.004 496374	7.215404226	4.372415266	1.398626	0.8652650	5.158924	5.053267
64	-1.002395300	6.884567681	4.460947747	1.339303	0.8866113	5.140409	5.031458
1128	-1.001496517	6.636183286	4.526381344	1.294293	0.9020666	5.127267	5.017791
1256	-1.001032325	6.444842550	4.576935359	1.259447	0.9137852	5.117198	5.008765
480	-1.000 776452	6.306267178	4.613901699	1.234159	0.9222146	5.109770	5.003068
Linear slope	-1.000 103	5.0838	4.9400	1.0111	0.99657	5.0442	4.9528
	-0.158	7.55	-2.01	1.38	-0.459	0.405	0.310
Quadratic slope	-1.000 124	5.0045	4.9737	0.9947	0.99936	5.0351	4.9793
	-0.141	8.48	-2.41	1.57	-0.492	0.511	-0.0003
$2 s \quad N$	$8 f_{v}$	$4 f$,	$4 f$	$4 F$	4F,	$f, ~ F / 5$	f / F,
24	-1.137330	2.431708	0.8105695	2.75687	0.743625	0.882055	1.090024
26	-1.066 802	2.234402	0.8196859	2.48354	0.757523	0.899685	1.082061
28	-1.041970	2.099851	0.8261490	2.30265	0.765811	0.911929	1.078789
210	-1.030 016	2.007762	0.8310068	2.18085	0.771894	0.920631	1.076582
$2 \quad 26$	-1.009 235	1.728184	0.8503551	1.82406	0.797284	0.947440	1.066565
264	-1.004 321	1.575870	0.8666106	1.64028	0.820388	0.960731	1.056343
2126	-1.002850	1.499143	0.8774451	1.55094	0.836315	0.966604	1.049181
240	-1.002065	1.444068	0.8866011	1.48805	0.849924	0.970447	1.043153
Linear slope	-1.000 34	1.0307	0.9553	1.0160	0.9521	0.9993	0.9979
	-0.284	2.27	-0.377	2.59	-0.560	-0.158	0.248
Quadratic slope	-1.00042	1.0389	0.991	1.0588	1.0086	0.9886	0.9750
	-0.240	2.18	-0.745	2.15	-1.14	-0.048	0.485

$2 s \quad N$	$20 f_{v}$	$20 f_{5}$	$20 f$	$6 F$	$6 F_{1}$	${ }_{6}^{20} f, / F$,	${ }_{6}^{20} f_{i} / F_{\text {c }}$
4	-3.490868892	10.709417289	2.643473002	3.6068028	0.5962761	2.9692273	4.433304
6	-3.244435482	9.343252931	2.575037327	3.0525433	0.6191811	3.0608093	4.158779
10	-3.114022321	8.001326652	2.524656864	2.5783797	0.6486945	3.1032383	3.891904
16	-3.062823 024	7.134320243	2.501313682	2.3042864	0.6749355	3.0961083	3.706004
26	-3.037601313	6.494951720	2.492871472	2.1138863	0.7001552	3.0725170	3.560456
3 50	-3.025 799850	6.074165793	2.494478363	1.9913278	0.7205798	3.0503093	3.461766
62	-3.018 728833	5.742731519	2.501946584	1.8946959	0.7394034	3.0309515	3.383737
100	-3.013963 517	5.459236739	2.514362496	1.8108580	0.7577759	3.0147240	3.318082
160	-3.010906 701	5.237036288	2.529100458	1.7437189	0.7738251	3.0033718	3.268310
Linear slope	-3.0019	3.060	2.674	1.086	0.9311	2.892	2.781
	-1.18	11.05	-0.73	3.34	-0.80	0.56	2.48
Quadratic slope	-3.0022	3.270	2.900	1.081	0.9950	2.968	2.909
	-1.04	9.02	-2.92	3.39	1.42	-0.17	1.24
$2 s \quad n$	$6 f_{v}$	12 f	12 fr	85	$8 F_{\text {f }}$	3f. $/ F_{\text {, }}$	$\frac{3}{2} f_{i} / F_{t}$
4	-1.186 270420	5.795418190	0.9879253647	2.8329156	0.4025179	2.0457433	2.454364
8	-1.061 444973	4.305101542	0.8804655114	2.6459815	0.4919038	1.6270339	1.789914
10	-1.045 259988	3.968295267	0.8576095788	2.5796557	0.5171779	1.5383042	1.658249
16	-1.025 588378	3.427593389	0.8221361611	2.4428800	0.5645979	1.4030953	1.456145
26	-1.015661836	3.036512152	0.7990172040	2.3128686	0.6058917	1.3128771	1.318746
32	-1.013 050093	2.905099355	0.7922649391	2.2617229	0.6214359	1.2844630	1.274894
50	-1.009 249467	2.674360758	0.7825317684	2.1611126	0.6511501	1.2374925	1.201769
80	-1.006822 136	2.487515932	0.7776045460	2.0682094	0.6778084	1.2027389	1.147233
$4 \quad 120$	-1.005442677	2.359142928	0.7764588581	1.9977301	0.6976837	1.1809117	1.112910
Linear slope	-1.00091	0.972	0.764	1.236	0.912	0.945	0.742
	-0.498	6.64	0.06	3.65	-1.03	1.13	1.78
Quadratic slope	-1.001 05	1.148	0.887	0.973	0.970	1.086	0.959
	-0.443	5.03	-1.07	6.06	-1.55	-0.16	-0.22

Table 4. The finite-size energy corrections for the vacuum and the lowest singlet and triplet excitations at $s=\frac{9}{2}$.

$2 s$	N	$44 f_{v}$	$44 f_{s}$		$44 f_{1}$	
9	4	-11.403963 2935	14.947317867		-2.072071 14509	
9	8	-9.869 3203778	8.396161215		-2.446 69973615	
9	16	-9.404 1745777	5.150993725			
9	32	-9.225 0675281	3.321264333			
9	52	-9.1615636516				
Linear slope		-9.030	-3.998		-3.196	
		-8.13		25.4		1.56
Quadratic slope		-9.022	-3.117			
		-9.63		19.9		

triplet take into account non-string narrow pairs [19] on the background of the sea of perfect $2 s$-strings. The asymptotic behaviour of these values is known [20,22]

$$
\begin{align*}
& F_{s}=\frac{1}{4}\left[s^{-1}+3 \ln ^{-1} N-3 \ln (8 s / \pi) \ln ^{-2} N+\mathrm{O}\left(\ln ^{-3} N\right)\right] \tag{10}\\
& F_{t}=\frac{1}{4}\left[s^{-1}-\ln ^{-1} N+\ln (8 s / \pi) \ln ^{-2} N+\mathrm{O}\left(\ln ^{-3} N\right)\right] \tag{11}
\end{align*}
$$

therefore they can be used to improve the extrapolation, since logarithmic corrections may be noticeably diminished in the ratios f_{s} / F_{s} and f_{t} / F_{r}.

In the excitations considered, one of the sea $2 s$-strings should be replaced by a ($2 s-1$)-string; in the singlet, another $2 s$-string is replaced by a perfect ($2 s+1$)-string at zero, without any deviations [24] from formula (8). However, for the ($2 s-1$)-string, a strong violation of the string hypothesis occurs: the imaginary parts of all its complex pairs get incremented by $\frac{1}{2}+O(1 / N)$, and thus, the pairs are 'dissolved' in the sea of the deformed $2 s$-strings. This is the limit picture. For high s at a finite N, an intermediate structure may be observed, when the higher members of the ($2 s-1$)-string have already 'stretched' to the size of $2 s$-strings while the lower members are still near their prescribed positions (8). An example-the $s=\frac{9}{2}, N=32$ singlet-is shown in table 5. Also, large Δx-type deformations may be present. These facts entail numerical instabilities due to difficulties in finding a good initial guess to start iterations.

As concerns the logarithmic slopes d_{α} in formula (4), their numerical estimates are very rough. For high s, when large values of n can hardly be achieved, even the signs for d_{α} may be wrong. This is seen from a non-monotonous behaviour of f_{t} at $2 s=3$ in table 3. Also, a difference is observed between the values extracted from the direct extrapolation of $f_{s, t}$ and from $f_{s, t} / F_{s, t}$. A fit of the data, which is consistent with the analytic result for the triplet at $s=\frac{1}{2}$ [12], looks like

$$
\begin{equation*}
d_{s}=\frac{3}{8}\left[1+(2 s)^{-1}\right] \quad d_{t}=-\frac{1}{8}\left[1+(2 s)^{-1}\right] . \tag{12}
\end{equation*}
$$

Table 5. The deformed ($2 s-1$)-string and the nearest roots of the $2 s$-string sea for the lowest singlet excitation at $s=\frac{9}{2}, N=32$.

$\operatorname{Re} \lambda$	$\|\operatorname{Im} \lambda\|$	$\|\operatorname{Re} \lambda\|$	$\|\operatorname{Im} \lambda\|$
		0.03340733576	0
0	0.67201120507	0.03378070097	0.98859450452
0	1.97527581140	0.06040573144	1.97592958181
0	2.99229988769	0.06463733732	2.99215051994
0	4.00116060099	0.06513126986	4.00117626026

For the vacuum, however, the values of the leading logarithmic-correction coefficient are more reliable. The vacuum finite-size energy corrections in table 3 are well described by the formula

$$
\begin{equation*}
f_{v} \simeq-(c / 12)\left[1+r_{v} \ln ^{-3} N+\mathrm{O}\left(\ln ^{-4} N\right)\right] \quad r_{v}=s /(s+3) \tag{13}
\end{equation*}
$$

Our fit $r_{v}=\frac{1}{7}$ at $s=\frac{1}{2}$ agrees neither with the earlier renormalisation-group prediction $r_{v}=\frac{3}{4}$ [1], nor with the analytic estimate $r_{v}=0.3433$ [12,13]. Strangely enough, the inadequacy of the latter value has not been noticed in the more advanced data [15]. Although the behaviour of further terms is unknown and something like $\mathrm{O}\left[\ln (\ln N) / \ln ^{4} N\right]$ may appear, the leading correction $\ln ^{-3} N$ is small enough for plausibility of our result. Besides, when including $\ln ^{-4} N$ ('quadratic' extrapolation in table 3), we obtain even a steeper slope which is farther from the analytic estimate and closer to the fit (13). An explanation of the contradiction may be the dropping of higher-order terms at the very beginning of the analytic calculation when a sum is replaced by an integral. In fact, the next term diverges, and non-analytic contributions [23] may be essential.

Finally, it is worth mentioning that the $X X Z$ model (with the anisotropy that does not lead to a mass gap) appears to belong to the same universality class as the $X X X$ model, at least as concerns the central charge and the lowest excitations considered in the present letter. Thus, the results obtained here may apply to the integrable $X X Z$ gapless magnet of spin s as well.

References

[1] Cardy J L 1984 J. Phys. A: Math. Gen. 17 L385
Blöte H W J, Cardy J L and Nightingale M P 1986 Phys. Rev. Lett. 56742
Cardy J L 1986 J. Phys. A: Math. Gen. 19 L1093 (erratum 198720 5039)
[2] Bethe H 1931 Z. Phys. 71205
[3] Faddeev L D 1980 Contemp. Math. Phys. C1 107 de Vega H J 1989 Int. J. Mod. Phys. A 42371
[4] Kulish P P, Reshetikhin N Yu and Sklyanin E K 1981 Lett. Math. Phys. 5393 Kulish P P and Sklyanin E K 1982 Lecture Notes in Physics 151 (Berlin: Springer) p 61
[5] Takhtajan L A 1982 Phys. Lett. 87A 479
[6] Babujian H M 1983 Nucl. Phys. B 215317
[7] von Gehlen G, Rittenberg V and Ruegg H 1986 J. Phys. A: Math. Gen. 19107
[8] Affleck I 1986 Phys. Rev. Lett. 56 746, 2763
[9] Knizhnik V G and Zamolodchikov A B 1984 Nucl. Phys. B 24783
[10] Affleck I and Haldane F D M 1987 Phys. Rev. B 365291
[11] de Vega H J and Woynarovich F 1985 Nucl. Phys. B 251439 Hamer C J 1985 J. Phys. A: Math. Gen. 18 L1133
[12] Hamer C J 1986 J. Phys. A: Math. Gen. 193335 Woynarovich F and Eckle H-P 1987 J. Phys. A: Math. Gen. 20 L97, L443
Hamer C J, Quispel G R W and Batchelor M T 1987 J. Phys. A: Math. Gen. 205677
Woynarovich F 1987 Phys. Rev. Lett. 59259 (erratum 198759 1264)
[13] Hamer C J, Batchelor M T and Barber M N 1988 J. Stat. Phys, 52679
[14] Avdeev L V and Dörfel B-D 1986 J. Phys. A: Math. Gen. 19 L13
[15] Alcaraz F C, Barber M N and Batchelor M T 1988 Ann. Phys., NY 182280
[16] Takahashi M 1971 Prog. Theor. Phys. 46401 Faddeev L D and Takhtajan L A 1981 Zap. Nauchn. Semin. LOMI 109134
[17] Destri C and Lowenstein J H 1982 Nucl. Phys. B 205369 Woynarovich F 1982 J. Phys. A: Math. Gen. 152985
[18] Avdeev L V 1989 J. Phys. A: Math. Gen. 22 L551
[19] Avdeev L V and Dörfel B-D 1985 Nucl. Phys. B 257253
[20] Avdeev LV and Dörfel B-D 1987 Teor. Mat. Fiz. 71272
[21] Ziman T and Schulz H J 1987 Phys. Rev. Lett. 59140
[22] Alcaraz F C and Martins M J 1988 J. Phys. A: Math. Gen. 21 L381, 4397
[23] de Vega H J and Woynarovich F 1990 J. Phys. A: Math. Gen. 231613
[24] Avdeev L V and Vladimirov A A 1986 Teor. Mat. Fiz. 69163

