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LETTER TO THE EDITOR 

The lowest excitations in the spin-s XXX magnet and 
conformal invariance 

L V Avdeev 
Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Head Post 
Office, PO Box 79, Moscow, 101000, USSR 

Received 18 January 1990 

Abstract. The Bethe-ansatz equations for the integrable spin-s isotropic Heisenberg antifer- 
romagnet are solved numerically at a finite number of sites N.  The vacuum and the lowest 
singlet and triplet solutions are presented for s = i ,  . . . , 2  up to sN = 240. Through extrapo- 
lation of the finite-size data, the central charge and anomalous dimensions of the scaling 
operators for the underlying conformal field theory are calculated and found to agree with 
the expected theoretical values. The status of the Bethe string hypothesis about the structure 
of the solutions is discussed based on the obtained computer data up to s =;. 

The study of low-lying excitations in finite-size one-dimensional quantum systems 
without a mass gap is of interest because of their relation to conformal invariance. 
The behaviour of finite-size energy corrections in the scaling region allows one to 
determine the parameters of the underlying conformal field theory relevant to critical 
phenomena [ 13. The Bethe ansatz [ 2 , 3 ]  reduces the solution of an integrable model 
to a system of coupled equations. This permits reaching a larger size and performing 
a more definite check of conformal-invariance predictions. 

The integrable spin-s generalisation [4-61 of the Heisenberg ring of N spins leads 
to the following Bethe-ansatz equations 

where O G  M G sN. A solution set of complex numbers { A , } M  determines the energy 
E, momentum P, and spin S of a state 

Conformal invariance predicts [ 13 that with periodic boundary conditions as N + o;, 
the ground-state and excitation energies should behave like 

E,  = e ,N-d~uN- ' [ c+O( ln -~  N)] ( 3 )  
E ,  - E ,  = 27ruN-'[x, + d,/ln N+o(ln- '  N ) ]  (4) 

where a central charge c, scaling dimensions x,, and slopes d, are parameters of a 
universality class, while e, and U are specific of a particular model. Equation (4) 
refers to the lowest state of a 'tower' of states with 

E h m . " ' = ~ , + 2 . r r v ~ - ' ( m + n )  phmn) = P , + Z . r r N - I ( m - n )  ( 5 )  
where m, n 3 0 are integers. 
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For the present model, esr=XL=l (2n- l ) - '  if s is an integer, and e,= 
1n2+X;:'j2 (2n)- '  for a half-odd-integer s [5,6]. The effective velocity of sound 
U = 7r/2 is extracted from the dispersion relation for elementary excitations (holes) 
[5-81, which should reproduce formula ( 5 )  as N + m .  The conjectured value of the 
central charge is [8] 

(6) 

It agrees with the specific heat capacity at low temperatures [6] which should be 
C,/  N = &" T. The conjecture for the underlying conformal field theory is the 
SU(2) k = 2s Wess-Zumino-Novikov-Witten (T model [9]. In that case, primary field 
operators should have the following scaling dimensions [ 101 

c = 3s/(  s + 1). 

x, = j ( j + l ) / ( s + l )  ( 7 )  

For the simplest case of s = i ,  when the bulk of the configuration comprises a sea 
of real roots, powerful analytic methods have been developed to evaluate finite-size 
corrections [ 11-13]. The results agree with the numerical computations [14, 151, 
although the logarithmic corrections in formulae (3) and (4) make the extrapolation, 
even for N s 1024 [ 151, rather hard [ 131. 

For s > $ ,  another difficulty arises, concerning the accuracy of the Bethe string 
hypothesis [2, 161 used in references [5,6]. The hypothesis claims that, as N + 00, any 
solution of equations (1) should consist of some n-strings 

m = 1, .  . . , n (8) 

with deviations of O[exp(-aN)]. Already at s = 4, some non-string configurations 
appear [ 17,181. A relaxed version [ 191 of the string hypothesis involves these configur- 
ations on the background of the sea of perfect 2s-strings. However, the numerical 
computations [20-221 show that at least O( 1/ N )  deformations of the sea strings occur. 
As a result, the analytic estimate that does not take these deformations into account 
leads to c = 1 irrespective of s [22], which contradicts the numerical data [ 18,20-221 
supporting formula (6). 

An important step to the analytic description of the string deformations has recently 
been made by de Vega and Woynarovich [23]. They succeeded in analytically estimating 
the leading correction to the imaginary parts of the roots (8) for the vacuum solution 
through a generalisation of the Euler-Maclaurin integration formula to include non- 
analytic contributions in N - ' .  It is worth comparing their estimate, which describes 
the asymptotics in N + m  for the bulk of the deformations (except the ends of the 
string distribution), with the computer data. In table 1, data for deviations of the 
distance between successive members of a string (8) from the imaginary unit, Ax + iAy = 
A,,, -A,,,+] -i ,  are shown. The minimum Ay is multiplied by N and then extrapolated 

A, =x+i [ (n  + 1)/2-m] 

Table 1. The extrapolated minimum string deformation NAye,",, and its theoretical predic- 
tion NAY:, ,  for different s. 

~~ 

2s NAye,",, NAY:,, 2s NAY;,,, NAY:,,  

2 0.220 0.220 635 600 6 0.053 0.050 403 474 
3 0.153 0.153 174481 7 0.043 0.040913 071 
4 0.093 0.091 572 048 8 0.034 0.031 946 720 
5 0.072 0.070 258 730 9 0.030 0.026 892 235 
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to N+co from the computer results for sN S 128 [20]. This NAyK?,, is presented in 
conjunction with the theoretical predictions [23] NAY$" for 1 S s S f . A perfect 
agreement is observed within extrapolation errors, presumably of O( 1/ N ) .  

A comparison of internal deformations of a sea string near the origin for the s = f , 
N = 52 vacuum with the asymptotics [23] is presented in table 2. The roots of equations 
( l ) ,  computed numerically, and their imaginary parts in the asymptotic approximation 
[23], taking into account the real-root position, are presented. One can see that the 
theoretical predictions underestimate by 7-20% the actual string deformations. The 
error seems to be of 0(1/N). 

Table 2. Numerical solutions A and theoretical predictions A t h  for the roots of a 9-string 
at s = 912, N = 52. 

Re A Im A Im A t h  

0.019 295 132 866 0 0 
0.019 294 724 871 +1.000617 28746 *1.000518 108 80 
0.019 293 355 234 12.001 329 577 57 i2.001 136 553 89 
0.019 290 441 652 13.002 323 601 98 13.002 054 142 55 
0.019 284 156 898 *4.004 290 492 52 k4.003 997 205 57 

Nonetheless, for excited states there are still no analytic results taking into account 
string deformations which are not smaller than 0(1/N),  as we have seen. Thus, 
numerical computations may provide important information. The results of the present 
letter (tables 2-5) have been obtained by a Newton-type method for the logarithms of 
equations ( 1 )  [20], regrouped [ 181 according to the chain configuration of strings [ 161 
and multiplets [ 191, to localise singularities in internal deformations of the chains. 

To extract the critical parameters, it is convenient to consider the following finite-size 
energy correction: 

f =  ( E  - e , N ) N / ( 2 m ) .  (9) 

According to formulae ( 3 )  and (6), we expect that for the vacuum solutions, as N + CO, 

fu should approach the limit of - f s / ( s  + l ) ,  proportional to the central charge. Thus, 
for 2s = 1 ,  2, 3, 4, and 9, we get -A, - 8 ,  -&, -: and -$. Besides the vacuum, for 
each s and N, two lowest excitations are computed, the singlet (with the 'rota1 spin 
S = O )  and the triplet ( S =  1) .  Solutions of the latter type have already been studied 
[21,22] (sector r = 1); in the domain of overlap, the results are in agreement with ours 
which extend to larger N. A conjecture to be verified in tables 3 and 4 is that the 
conformal dimensions both for the singlet and triplet are given by formula (7) with 
j = i, x, = x, = i / ( s  + 1). Hence, the finite-size energy corrections should approach A,  
ft-4(3-s)/(s+1), which equals A ,  4, &, A, and -& for 2 s =  1, 2, 3, 4, and 9. The 
normalisation factors in tables 3 and 4 involve the denominators of the expected limit 
values, to make the comparison easier. 

The data are extrapolated to zero in l /( ln N )  linearly (using two last rows) and 
quadratically (three last rows). The extrapolation of the vacuum correction fu includes 
the terms N (3) and N. For estimating extrapolation errors and getting 
improved values, the results of the higher-level Bethe-ansatz approximation [ 17-20] 
are included in table 3. The corresponding values of F, and F, for the singlet and 
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Table 4. The finite-size energy corrections for the vacuum and the lowest singlet and triplet 
excitations at s =f. 

2s N 44 f" 44f, 44 f, 

9 4 - 11.403 963 2935 14.947 317 867 -2.072 071 145 09 
9 8 -9.869 320 3778 8.396 161 215 -2.446 699 736 15 
9 16 -9.404 174 5777 5.150993 725 
9 32 -9.225 067 5281 3.321 264 333 
9 52 -9.161 563 6516 
Linear slope -9.030 -3.998 -3.196 

Quadratic slope -9.022 -3.117 
-8.13 25.4 1.56 

-9.63 19.9 

triplet take into account non-string narrow pairs [ 191 on the background of the sea of 
perfect 2s-strings. The asymptotic behaviour of these values is known [20,22] 

F, = $[ s-' + 3 ln-' N - 3 ln(Ss/ T) In-* N + O ( l f 3  N)] 

F, =$- ' - In- '  N+ln(Ss /T)  l K 2  N+O(ln-3 N)] 
(10) 

(11) 
therefore they can be used to improve the extrapolation, since logarithmic corrections 
may be noticeably diminished in the ratios A /  F, and fr/ F,. 

In the excitations considered, one of the sea 2s-strings should be replaced by a 
(2s - 1)-string; in the singlet, another 2s-string is replaced by a perfect (2s + 1)-string 
at zero, without any deviations [24] from formula (8). However, for the (2s - 1)-string, 
a strong violation of the string hypothesis occurs: the imaginary parts of all its complex 
pairs get incremented by f + O ( l / N ) ,  and thus, the pairs are 'dissolved' in the sea of 
the deformed 2s-strings. This is the limit picture. For high s at a finite N, an 
intermediate structure may be observed, when the higher members of the (2s - 1)-string 
have already 'stretched' to the size of 2s-strings while the lower members are still near 
their prescribed positions (8) .  An example-the s = g ,  N = 32 singlet-is shown in 
table 5 .  Also, large Ax-type deformations may be present. These facts entail numerical 
instabilities due to difficulties in finding a good initial guess to start iterations. 

As concerns the logarithmic slopes d, in formula (4), their numerical estimates are 
very rough. For high s, when large values of n can hardly be achieved, even the signs 
for d, may be wrong. This is seen from a non-monotonous behaviour of fr at 2s = 3 
in table 3. Also, a difference is observed between the values extracted from the direct 
extrapolation of fs . ,  and from A,,/ Fs,,. A fit of the data, which is consistent with the 
analytic result for the triplet at s = f [ 121, looks like 

d ,  = :[ 1 + (2s)-'] d,  = -$[ 1 + (2~) - ' ] .  (12) 

Table 5. The deformed (2s - 1)-string and the nearest roots of the 2s-string sea for the 
lowest singlet excitation at s = f ,  N = 32. 

0.033 407 335 76 0 
0 0.672 01 1 205 07 0.033 780 700 97 0.988 594 504 52 
0 1.975 275 811 40 0.060 405 731 44 1.975 929 581 81 
0 2.992 299 887 69 0.064 637 337 32 2.992 15051994 
0 4.001 160 600 99 0.065 131 269 86 4.001 176 260 26 
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For the vacuum, however, the values of the leading logarithmic-correction coefficient 
are more reliable. The vacuum finite-size energy corrections in table 3 are well described 
by the formula 

fu=-(c/12)[1+r,  In-' N + o ( I ~ - ~  N ) ]  rv = s / ( s + 3 ) .  (13) 

Our fit ru = f at s = 4 agrees neither with the earlier renormalisation-group prediction 
r, = a  [l], nor with the analytic estimate rv =0.3433 [12, 131. Strangely enough, the 
inadequacy of the latter value has not been noticed in the more advanced data [15]. 
Although the behaviour of further terms is unknown and something like 
O[ln(ln N)/ ln4 NI may appear, the leading correction In-' N is small enough for 
plausibility of our result. Besides, when including I f 4  N ('quadratic' extrapolation 
in table 3), we obtain even a steeper slope which is farther from the analytic estimate 
and closer to the fit (13). An explanation of the contradiction may be the dropping 
of higher-order terms at the very beginning of the analytic calculation when a sum is 
replaced by an integral. In fact, the next term diverges, and non-analytic contributions 
[23] may be essential. 

Finally, it is worth mentioning that the X X Z  model (with the anisotropy that does 
not lead to a mass gap) appears to belong to the same universality class as the X X X  
model, at least as concerns the central charge and the lowest excitations considered 
in the present letter. Thus, the results obtained here may apply to the integrable X X Z  
gapless magnet of spin s as well. 
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